

    
      
          
            
  
anlearn - Anomaly learn

[image: _images/anomaly-learn-with-text.png]
In Gauss Algorithmic [https://www.gaussalgo.com/en/], we’re working on many anomaly/fraud detection projects using open-source tools. We decided to put our two cents in and  “tidy up” some of our code snippets, add documentation, examples, and release them as an open-source package. So let me introduce anlearn. It aims to offer multiple interesting anomaly detection methods in familiar scikit-learn [https://github.com/scikit-learn/scikit-learn] API so you could quickly try some anomaly detection experiments yourself.

So far, this package is an alpha state and ready for your experiments.

Do you have any questions, suggestions, or want to chat? Feel free to contact us via Github [https://github.com/gaussalgo/anlearn], Gitter [https://gitter.im/gaussalgo-anlearn/community], or email.
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License

GNU Lesser General Public License v3 or later (LGPLv3+)

anlearn  Copyright (C) 2020  Gauss Algorithmic a.s.

This package is in alpha state and comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to use, redistribute it and contribute under certain conditions of it’s license.





            

          

      

      

    

  

    
      
          
            
  
Installation

anlearn depends on scikit-learn [https://github.com/scikit-learn/scikit-learn] and it’s dependencies scipy [https://github.com/scipy/scipy] and numpy [https://github.com/numpy/numpy].

Requirements:


	python >=3.6


	scikit-learn [https://github.com/scikit-learn/scikit-learn]


	scipy [https://github.com/scipy/scipy]


	numpy [https://github.com/numpy/numpy]




Requirements for every supported python version with version and hashes could be found in requirements folder.
We’re using pip-tools [https://github.com/jazzband/pip-tools] for generating requirements files.


Intallation options


PyPI installation

pip install anlearn








Installation from source

git clone https://github.com/gaussalgo/anlearn
cd anlearn





Installing requirements.

# Generated requirements for all supported python versions
ls requirements/requirements-3.*.txt | grep -v dev
requirements/requirements-3.6.txt
requirements/requirements-3.7.txt
requirements/requirements-3.8.txt
pip install -r requirements/requirements-3.8.txt





or

pip install scikit-learn numpy scipy





Install anlearn.

pip install .





or

python setup.py install













            

          

      

      

    

  

    
      
          
            
  
LODA: Lightweight on-line detector of anomalies

The lightweight on-line detector of anomalies (LODA) is an outlier detection method proposed by Tomáš Pevný in
2015 article Loda: Lightweight on-line detector of anomalies 1.

LODA is a simple yet very sophisticated ensemble of weak estimators which results in a fast and robust anomaly detection model.
The most significant advantages of this model are its simplicity, speed, ability to explain the cause of an anomaly,
option for on-line training, and robustness to missing values.

Without going into too many technical details, the “hearth” of LODA  consists of one-dimensional histograms constructed on
sparse random projections. Random sparse projects allow LODA to use simple one-dimensional histograms, thus processing
large datasets in relatively small time complexity. On top of that, with smart usage of their sparsity, it’s possible not
only to evaluate samples with missing features but also to use them in the training process.
Because histograms are one of the simplest density estimators available, they have low construction/evaluation time complexity.
Anomaly score is a negative average log probability estimated from histogram on projections.
Also, it has a higher time complexity than scoring samples because we need to evaluate every feature separately.

>>> import numpy as np
>>> from anlearn.loda import LODA

>>> X = np.array([[0, 0], [0.1, -0.2], [0.3, 0.2], [0.2, 0.2], [-5, -5], [0.6, 0.7]])

>>> loda = LODA(n_estimators=10, bins=10, random_state=42)
>>> loda.fit(X)
LODA(bins=10, n_estimators=10, random_state=42)
>>> loda.predict(X)
array([ 1,  1,  1,  1, -1,  1])





Bellow, you can see a comparison of LODA and outlier detection algorithms included in scikit-learn
(Comparison of scikit-learn anomaly detection methods and LODA).


[image: Comparison of scikit-learn anomaly detection methods and LODA]
Comparison of scikit-learn anomaly detection methods and LODA




LODA parameters

LODA is a quite simple outlier detection model. Our implementation so far has only three
primary parameters: n_estimators, bins, and random_seed.


	n_estimators: number of projections and histograms.


	bins: number of bins for each histogram.


	random_state: random state for stochastic parts.


	q: quantile for eveluating “anomalous” points during predict method.
For detecting the “outliers” in predict method,  we use the threshold evaluated from anomaly scores on training samples.
For this purpose, we compute q quantile from training samples. For anomaly detection,
we use the supposed percentage of abnormal points, for novelty detection 0.




See API docs for more details (anlearn.loda.LODA).




Projections and histograms


Random projections

As mentioned before, the “hearth” of LODA consists of random sparse projections and one-dimensional histograms.

Projections are sparse vectors with \(\sqrt{d}\) non-zero features (\(d\) is number of dimensions of input data).
Non-zero values are generated from \(N(0; 1)\).
This choice allows approximating the quantity of \(L_2\)
distances between points from input space in projected space 1. Simply, we could take this as looking at the data from different angles.
Sparsity also allows LODA to train and evaluate on data with missing values.

>>> loda.projections_
array([[-1.01283112,  0.        ],
       [ 0.        ,  0.31424733],
       [ 0.        , -0.90802408],
       [-1.4123037 ,  0.        ],
       [ 1.46564877,  0.        ],
       [-0.2257763 ,  0.        ],
       [ 0.        ,  0.0675282 ],
       [-1.42474819,  0.        ],
       [-0.54438272,  0.        ],
       [ 0.        ,  0.11092259]])





Right now, the number of projections is set on LODA initialization (n_estimators parameter)
and initialized at the start of model fitting.
In the future, we plan to implement an automatic selection for the number of projections.

See LODA: projections & histograms for full example.


[image: LODA projections & histograms]
LODA: projections & histograms






Histograms

Histograms are the second essential part of the LODA model. In our implementation, we’re using equi-width histograms.
It’s more or less for practical reasons. In the LODA article experiments,
we could see that this type of histograms outperformed others (section 3.3 Histogram and 4.Experiments 1).
On top of that, it’s straightforward to implement and fast. In future releases, we plan to introduce more
flexibility in histograms (different types, online learning, etc.).

anlearn.loda.Histogram is implemented as a scikit-learn BaseEstimator (it shares similarities with scipy.stats.rv_histogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.html#scipy.stats.rv_histogram]).
For detecting bin width and intervals, we’re using numpy.histogram [https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram] function.

>>> loda.hists_
[Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10),
Histogram(bins=10)]










Explaining the cause of an anomaly

The knowledge that an example is anomalous just the first part of the whole anomaly detection pipeline.
Without investigating further, I would consider this information almost useless. Lucky for us, LODA has a built-in way to
get a little bit more information about why a particular example is viewed as an anomaly. With the smart usage of sparse projections,
we could compute a one-tailed two-sample t-test between probabilities from histograms on projections with and without aspecific features.
Casually speaking, if histograms using a particular feature have statistically higher anomaly scores than ones without it, we should have a closer look at it. Also, it has a higher time complexity than scoring samples because we need to evaluate every feature separately.

Of course, we should not consider this to be the ground truth for explaining the cause of an anomaly.
That is a complicated process requiring more analysis with in-depth knowledge of data.
LODA gives us only a good starting point to lead our investigation.
If you want to see a full mathematical explanation read section 3.3 Explaining the cause of an anomaly 1 in the original article.

>>> loda.score_features(X)
array([[ 3.57203657, -3.57203657],
       [ 1.15114953, -1.15114953],
       [ 1.8592136 , -1.8592136 ],
       [ 1.8592136 , -1.8592136 ],
       [ 2.29212856, -2.29212856],
       [-2.23606174,  2.23606174]])





To show this feature of LODA, we created a simple example using the Zoo dataset from the UCI Machine Learning Repository 3
(LODA: Explaining the cause of an anomaly on Zoo dataset).
It contains different animal species and a summary of their characteristics (hair, feathers, eggs, milk, airborne, aquatic, etc.).
We have chosen it because it’s small, simple, and features are easily understandable (cat has for legs :) …)
First of all, we transform this dataset using UMAP (umap.UMAP) 2 to show in two dimensions.


[image: LODA: Eplaining the cause of an anomaly on ZOO dataset]


Once we get anomaly scores and importance of each feature, we could investigate further.
We’ll choose the five most anomalous animals. For example, we’ll take a closer look at honeybee.
It has a quite high score, and the most significant features are venomous (1.91), hair (1.55), breathes (1.28), and domestic (0.97).
If we consider the composition of our dataset, there are no other venomous animals that are domestic, so it does seem right.
We could find explanations like this for every other animal in the top five. Octopus has eight legs; sea wasp does have almost
none of the features in the dataset, etc. So could we tell that these are the real reasons why these animals are unusual? Yes and no.
Yes, this is why LODA sees them as anomalies considering our data, but without a review from a domain expert,
we must be careful about such a statement.
Also, consider the fact that this dataset is small, oversimplified, with just a limited number of features.


[image: LODA: Eplaining the cause of an anomaly on ZOO dataset]


honeybee score: -4.576
        venomous 1 (1.91)
        hair 1 (1.55)
        breathes 1 (1.28)
        domestic 1 (0.97)
octopus score: -5.763
        backbone 0 (3.06)
        legs 8 (1.79)
        feathers 0 (0.96)
        toothed 0 (0.80)
scorpion score: -5.007
        legs 8 (2.18)
        toothed 0 (1.23)
        domestic 0 (1.16)
        feathers 0 (0.82)
seawasp score: -4.898
        backbone 0 (1.78)
        milk 0 (1.06)
        toothed 0 (1.05)
        feathers 0 (0.80)
wasp score: -4.579
        feathers 0 (1.99)
        fins 0 (1.43)
        catsize 0 (1.41)
        breathes 1 (1.16)





To sum it up. LODA has a really powerful tool to explain the cause of an anomaly.
It is more resource consuming than scoring samples. We should take a closer look at anomalies if we want to tell the real reason.




Using LODA on large datasets

In previous sections, we have seen that LODA is fully capable of getting similar results to more complex anomaly detection methods. Now we could take full advantage of LODA’s low time and space complexity and use it on some more massive datasets.

We’ll use Credit Card Fraud Detection dataset from the Machine Learning Group of Université Libre de Bruxelles 4 (it’s available on Kaggle 5).
This dataset consists of credit card transactions with 492 frauds out of 284,807 transactions. Features are a byproduct of PCA transformation without any additional information due to confidentiality issues (LODA: large data - Credit Card Fraud Detection dataset).

First of all, we’ll visualize the entire dataset in low dimensional space to get an overview. We’ll transform data using UMAP 2 and then plot results.


[image: LODA: large dataset transformed by UMAP]


At first sight at this visualization, we could see some apparent clusters. Some of them even including a lot of fraud transactions. But this could be misleading due to significant overplotting. We’ll try to solve this issue by using a more meaningful projection created by Datashader 6.


[image: LODA: large dataset transformed by UMAP and Datashader]


Once we have some clues about how the dataset looks, let’s try to detect some fraud transactions. Because of its size, we’ll use only LODA and isolation forest as anomaly detection methods. For comparing them, we’ll use the area under the ROC curve.


[image: LODA: large dataset ROC curve]


As we can see, both methods performed very well (with the LODA slightly better). The low time complexity kicks in once we look at the training/predicting time for both detectors. It took LODA only 1/4 of the isolation forest’s time to score 284,807 samples. It does not seem like such a big difference, but once we go up to millions of transactions, it could be a game-changer.

To finalize this section, let’s make another plot using Datashader and anomaly scores from LODA.


[image: LODA: large dataset transformed by UMAP and Datashader]
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Examples using anlearn.loda.LODA


[image: LODA: large data - Credit Card Fraud Detection dataset]
LODA: large data - Credit Card Fraud Detection dataset











            

          

      

      

    

  

    
      
          
            
  
Gallery

Gallery of examples from anlearn.


[image: LODA: projections & histograms]
LODA: projections & histograms








[image: Comparison of scikit-learn anomaly detection methods and LODA]
Comparison of scikit-learn anomaly detection methods and LODA
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LODA: large data - Credit Card Fraud Detection dataset








[image: LODA: Explaining the cause of an anomaly on Zoo dataset]
LODA: Explaining the cause of an anomaly on Zoo dataset










Download all examples in Python source code: auto_examples_python.zip




Download all examples in Jupyter notebooks: auto_examples_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




LODA: projections & histograms

# Author: Ondrej Kurák kurak@gaussalgo.com
# License: LGPLv3+
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats.kde import gaussian_kde
from sklearn.datasets import make_blobs

from anlearn.loda import LODA

rng = np.random.RandomState(42)

n_inliers = 900
n_outliers = 100
n_samples = n_inliers + n_outliers

n_features = 5

data = make_blobs(
    centers=[[-2] * n_features, [2] * n_features],
    cluster_std=[1.5, 0.3],
    random_state=42,
    n_samples=n_inliers,
    n_features=n_features,
)[0]

data = np.concatenate(
    [data, rng.uniform(low=-6, high=6, size=(n_outliers, n_features))]
)





loda = LODA(n_estimators=5, bins=100, random_state=42, q=0.1)
loda.fit(data)
predicted = loda.predict(data)

plt.figure(figsize=(12, 8))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)
colors = np.array(["#377eb8", "#ff7f00"])
plt.scatter(data[:, 0], data[:, 1], s=15, color=colors[(predicted + 1) // 2])
plt.xticks(())
plt.yticks(())
plt.title("LODA test dataset anomalous points", fontsize=15)
plt.show()





[image: LODA test dataset anomalous points]
w_X = loda.projections_ @ data.T

labels = [f"w={x.round(2)}" for x in loda.projections_]
n_points = 500
bounds = (np.min(w_X), np.max(w_X))

plt.figure(figsize=(12, 10))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)
xx = np.linspace(*bounds, n_points)
yticks = []
for i, tmp in enumerate(zip(w_X, labels)):
    points, label = tmp
    pdf = gaussian_kde(points)
    y = i + 0.1
    yticks.append(y)
    curve = pdf(xx)
    plt.hist(points, density=True, bottom=y, bins="auto", label=label)
    plt.plot(xx, curve + y, c="black")

plt.legend(fontsize=13)
plt.title("LODA projections & histograms", fontsize=15)
plt.xlim(bounds)
plt.yticks(())
plt.show()


# sphinx_gallery_thumbnail_number = 2





[image: LODA projections & histograms]
Total running time of the script: ( 0 minutes  0.494 seconds)



Download Python source code: plot_loda_projections.py




Download Jupyter notebook: plot_loda_projections.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Comparison of scikit-learn anomaly detection methods and LODA

Comparison of LODA 1 and scikit-learn anomaly detection methods 2.

# Original Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#                  Albert Thomas <albert.thomas@telecom-paristech.fr>
# Edited by: Andrea Rozhoňoná <rozhonova@gaussalgo.com>
#            Ondrej Kurák <kurak@gaussalgo.com>
# License: BSD 3 clause
import time

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from sklearn import svm
from sklearn.covariance import EllipticEnvelope
from sklearn.datasets import make_blobs, make_moons
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor

from anlearn.loda import LODA

print(__doc__)

matplotlib.rcParams["contour.negative_linestyle"] = "solid"

# Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers

# define outlier/anomaly detection methods to be compared
anomaly_algorithms = [
    ("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)),
    ("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf", gamma=0.1)),
    (
        "Isolation Forest",
        IsolationForest(contamination=outliers_fraction, random_state=42),
    ),
    (
        "Local Outlier Factor",
        LocalOutlierFactor(n_neighbors=35, contamination=outliers_fraction),
    ),
    ("LODA", LODA(n_estimators=100, q=outliers_fraction, bins=10, random_state=42)),
]

# Define datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
datasets = [
    make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5, **blobs_params)[0],
    make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5], **blobs_params)[0],
    make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, 0.3], **blobs_params)[0],
    4.0
    * (
        make_moons(n_samples=n_samples, noise=0.05, random_state=0)[0]
        - np.array([0.5, 0.25])
    ),
    14.0 * (np.random.RandomState(42).rand(n_samples, 2) - 0.5),
]

# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 150), np.linspace(-7, 7, 150))

plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5))
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)

plot_num = 1
rng = np.random.RandomState(42)

for i_dataset, X in enumerate(datasets):
    # Add outliers
    X = np.concatenate([X, rng.uniform(low=-6, high=6, size=(n_outliers, 2))], axis=0)

    for name, algorithm in anomaly_algorithms:
        t0 = time.time()
        algorithm.fit(X)
        t1 = time.time()
        plt.subplot(len(datasets), len(anomaly_algorithms), plot_num)
        if i_dataset == 0:
            plt.title(name, size=18)

        # fit the data and tag outliers
        if name == "Local Outlier Factor":
            y_pred = algorithm.fit_predict(X)
        else:
            y_pred = algorithm.fit(X).predict(X)

        # plot the levels lines and the points
        if name != "Local Outlier Factor":  # LOF does not implement predict
            Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()])
            Z = Z.reshape(xx.shape)
            plt.contour(xx, yy, Z, levels=[0], linewidths=1.5, colors="black")

        colors = np.array(["#377eb8", "#ff7f00"])
        plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])

        plt.xlim(-7, 7)
        plt.ylim(-7, 7)
        plt.xticks(())
        plt.yticks(())
        plt.text(
            0.99,
            0.01,
            ("%.2fs" % (t1 - t0)).lstrip("0"),
            transform=plt.gca().transAxes,
            size=15,
            horizontalalignment="right",
        )
        plot_num += 1





[image: Robust covariance, One-Class SVM, Isolation Forest, Local Outlier Factor, LODA]

References


	1

	Pevný, T. Loda: Lightweight on-line detector of anomalies. Mach Learn 102, 275–304 (2016).
<https://doi.org/10.1007/s10994-015-5521-0>



	2

	Sckikit-learn Comparing anomaly detection algorithms for outlier detection on toy datasets
https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_anomaly_comparison.html#sphx-glr-auto-examples-miscellaneous-plot-anomaly-comparison-py





Total running time of the script: ( 0 minutes  4.934 seconds)



Download Python source code: plot_sklearn_anomaly_detection_methods_comparison.py




Download Jupyter notebook: plot_sklearn_anomaly_detection_methods_comparison.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]







            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




LODA: large data - Credit Card Fraud Detection dataset

In previous sections, we have seen that LODA 1 is fully capable of getting similar results
to more complex anomaly detection methods. Now we could take full advantage of LODA’s
low time and space complexity and use it on some more massive datasets.

We’ll use Credit Card Fraud Detection dataset from the Machine Learning Group of
Université Libre de Bruxelles 4 (it’s available on Kaggle 5).
This dataset consists of credit card transactions with 492 frauds out of 284,807 transactions.
Features are a byproduct of PCA transformation without any additional information
due to confidentiality issues.

First of all, we’ll visualize the entire dataset in low dimensional space to get an overview. We’ll transform data using UMAP 2 and then plot results.

# Author: Ondrej Kurák kurak@gaussalgo.com
# License: LGPLv3+
import time

import datashader as ds
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from colorcet import fire
from datashader import transfer_functions as tf
from sklearn.ensemble import IsolationForest
from sklearn.metrics import auc, roc_curve
from umap import UMAP

from anlearn.loda import LODA

frame = pd.read_csv("../datasets/creditcard.csv")

X = np.arcsinh(frame.values[:, 1:-1])
y = frame["Class"].values


umap = UMAP(random_state=42)

# This could take ~30 min on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
# transformed = umap.fit_transform(X)
# with open("../datasets/transformed.npy", "wb") as out:
#     np.save(out, transformed)
transformed = np.load("../datasets/transformed.npy")


plt.figure(figsize=(12, 8))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)

for index, label in enumerate(("Normal transaction", "Fraud transaction")):
    plt.scatter(
        transformed[:, 0][y == index],
        transformed[:, 1][y == index],
        s=5,
        label=label,
        alpha=0.5,
    )

plt.legend(fontsize=13)
plt.xticks(())
plt.yticks(())

plt.title("Transformation by UMAP", fontsize=15)
plt.show()






[image: LODA: large dataset transformed by UMAP]


At first sight at this visualization, we could see some apparent clusters.
Some of them even including a lot of fraud transactions. But this could be misleading
due to significant overplotting. We’ll try to solve this issue by
using a more meaningful projection created by Datashader 6.

shader_data = pd.DataFrame(
    transformed,
    columns=["x", "y"],
)

agg = ds.Canvas(plot_width=1000, plot_height=800).points(shader_data, "x", "y")

img = tf.shade(agg, name="Transformation by UMAP + Datashader")

plt.figure(figsize=(15, 15))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(top=0.96, wspace=0.05, hspace=0.01)
plt.imshow(img.to_pil())
plt.title("Transformation by UMAP + Datashader", fontsize=15)
plt.xticks(())
plt.yticks(())
plt.show()






[image: LODA: large dataset transformed by UMAP and Datashader]


Once we have some clues about how the dataset looks, let’s try to detect some fraud
transactions. Because of its size, we’ll use only LODA and isolation forest as anomaly
detection methods. For comparing them, we’ll use the area under the ROC curve.

times = {}

loda = LODA(n_estimators=100, random_state=42, bins=100)

start_time = time.monotonic()
loda.fit(X)
times["loda.fit"] = time.monotonic() - start_time

start_time = time.monotonic()
loda_scores = loda.score_samples(X)
times["loda.score_samples"] = time.monotonic() - start_time


start_time = time.monotonic()
feature_scores = loda.score_features(X)
times["loda.score_features"] = time.monotonic() - start_time

isoforest = IsolationForest(n_estimators=100, random_state=42)

start_time = time.monotonic()
isoforest.fit(X)
times["isoforest.fit"] = time.monotonic() - start_time

start_time = time.monotonic()
iso_scores = isoforest.score_samples(X)
times["isoforest.score_samples"] = time.monotonic() - start_time

loda_fpr, loda_tpr, _ = roc_curve(y, -loda_scores)
loda_auc = auc(loda_fpr, loda_tpr)

isof_fpr, isof_tpr, _ = roc_curve(y, -iso_scores)
isof_auc = auc(isof_fpr, isof_tpr)


plt.figure(figsize=(12, 8))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)

plt.plot(
    loda_fpr,
    loda_tpr,
    label=f"""LODA
 auc: {loda_auc:.3f}
 fit time: {times["loda.fit"]:.2f}s
 score time: {times["loda.score_samples"]:.2f}s,
 fscore time: {times["loda.score_features"]:.2f}s""",
)
plt.plot(
    isof_fpr,
    isof_tpr,
    label=f"""Isolation Forest
 auc: {isof_auc:.3f}
 fit time: {times["isoforest.fit"]:.2f}s
 score time: {times["isoforest.score_samples"]:.2f}s""",
)

plt.plot([0, 1], [0, 1], color="navy", linestyle="--")

plt.title("Credit cards ROC curve", fontsize=15)
plt.legend(
    title="Algorithm results", title_fontsize=15, fontsize=13, loc="center right"
)
plt.xlabel("False positive rate", fontsize=13)
plt.ylabel("True positive rate", fontsize=13)

plt.show()






[image: LODA: large dataset ROC curve]


As we can see, both methods performed very well (with the LODA slightly better).
The low time complexity kicks in once we look at the training/predicting time for both
detectors. It took LODA only 1/4 of the isolation forest’s time to score 284,807 samples.
It does not seem like such a big difference, but once we go up to millions of
transactions, it could be a game-changer.

To finalize this section, let’s make another plot using Datashader and anomaly scores from LODA.

shader_data = pd.DataFrame(
    np.hstack([transformed, loda_scores[:, np.newaxis]]),
    columns=["x", "y", "anomaly_score"],
)

agg = ds.Canvas(plot_width=1000, plot_height=800).points(
    shader_data, "x", "y", ds.mean("anomaly_score")
)

img = tf.shade(
    agg, cmap=fire, name="Transformation by UMAP + Datashader (average anomaly score)"
)

img = tf.set_background(img, "black")

plt.figure(figsize=(15, 15))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)
plt.imshow(img.to_pil())
plt.title("Transformation by UMAP + Datashader (average anomaly score)", fontsize=15)
plt.xticks(())
plt.yticks(())
plt.show()






[image: LODA: large dataset transformed by UMAP and Datashader]



References


	1

	Pevný, T. Loda: Lightweight on-line detector of anomalies. Mach Learn 102, 275–304 (2016).
<https://doi.org/10.1007/s10994-015-5521-0>



	2

	McInnes, L., Healy, J., Saul, N., & Grossberger, L. (2018). UMAP: Uniform Manifold Approximation and Projection
The Journal of Open Source Software, 3(29), 861. <https://github.com/lmcinnes/umap/>



	4

	Machine Learning Group of Université Libre de Bruxelles <http://mlg.ulb.ac.be>



	5

	Kaggle: Credit Card Fraud Detection <https://www.kaggle.com/mlg-ulb/creditcardfraud>



	6

	HoloViz Datashader <https://datashader.org/>





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: loda_large_dataset.py




Download Jupyter notebook: loda_large_dataset.ipynb
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Note

Click here
to download the full example code




LODA: Explaining the cause of an anomaly on Zoo dataset

The knowledge that an example is anomalous just the first part of the whole anomaly detection pipeline.
Without investigating further, I would consider this information almost useless. Lucky for us, LODA has a built-in way to
get a little bit more information about why a particular example is viewed as an anomaly. With the smart usage of sparse projections,
we could compute a one-tailed two-sample t-test between probabilities from histograms on projections with and without aspecific features.
Casually speaking, if histograms using a particular feature have statistically higher anomaly scores than ones without it, we should have a closer look at it. Also, it has a higher time complexity than scoring samples because we need to evaluate every feature separately.

Of course, we should not consider this to be the ground truth for explaining the cause of an anomaly.
That is a complicated process requiring more analysis with in-depth knowledge of data.
LODA gives us only a good starting point to lead our investigation.
If you want to see a full mathematical explanation read section 3.3 Explaining the cause of an anomaly 1 in the original article.

To show this feature of LODA, we created a simple example using the Zoo dataset from the UCI Machine Learning Repository 3.
It contains different animal species and a summary of their characteristics (hair, feathers, eggs, milk, airborne, aquatic, etc.).
We have chosen it because it’s small, simple, and features are easily understandable (cat has for legs :) …)
First of all, we transform this dataset using UMAP (umap.UMAP) 2 to show in two dimensions.

# Author: Ondrej Kurák kurak@gaussalgo.com
# License: LGPLv3+

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from umap import UMAP

from anlearn.loda import LODA

frame = pd.read_csv(
    "https://raw.githubusercontent.com/sharmaroshan/Zoo-Dataset/master/zoo.csv",
)

frame.set_index("animal_name", inplace=True)

print(frame)





Out:

             hair  feathers  eggs  milk  ...  tail  domestic  catsize  class_type
animal_name                              ...
aardvark        1         0     0     1  ...     0         0        1           1
antelope        1         0     0     1  ...     1         0        1           1
bass            0         0     1     0  ...     1         0        0           4
bear            1         0     0     1  ...     0         0        1           1
boar            1         0     0     1  ...     1         0        1           1
...           ...       ...   ...   ...  ...   ...       ...      ...         ...
wallaby         1         0     0     1  ...     1         0        1           1
wasp            1         0     1     0  ...     0         0        0           6
wolf            1         0     0     1  ...     1         0        1           1
worm            0         0     1     0  ...     0         0        0           7
wren            0         1     1     0  ...     1         0        0           2

[101 rows x 17 columns]





# !cat ../datasets/zoo.names

# 1. Title: Zoo database

# 2. Source Information
#    -- Creator: Richard Forsyth
#    -- Donor: Richard S. Forsyth
#              8 Grosvenor Avenue
#              Mapperley Park
#              Nottingham NG3 5DX
#              0602-621676
#    -- Date: 5/15/1990

# 3. Past Usage:
#    -- None known other than what is shown in Forsyth's PC/BEAGLE User's Guide.

# 4. Relevant Information:
#    -- A simple database containing 17 Boolean-valued attributes.  The "type"
#       attribute appears to be the class attribute.  Here is a breakdown of
#       which animals are in which type: (I find it unusual that there are
#       2 instances of "frog" and one of "girl"!)

#       Class# Set of animals:
#       ====== ===============================================================
#            1 (41) aardvark, antelope, bear, boar, buffalo, calf,
#                   cavy, cheetah, deer, dolphin, elephant,
#                   fruitbat, giraffe, girl, goat, gorilla, hamster,
#                   hare, leopard, lion, lynx, mink, mole, mongoose,
#                   opossum, oryx, platypus, polecat, pony,
#                   porpoise, puma, pussycat, raccoon, reindeer,
#                   seal, sealion, squirrel, vampire, vole, wallaby,wolf
#            2 (20) chicken, crow, dove, duck, flamingo, gull, hawk,
#                   kiwi, lark, ostrich, parakeet, penguin, pheasant,
#                   rhea, skimmer, skua, sparrow, swan, vulture, wren
#            3 (5)  pitviper, seasnake, slowworm, tortoise, tuatara
#            4 (13) bass, carp, catfish, chub, dogfish, haddock,
#                   herring, pike, piranha, seahorse, sole, stingray, tuna
#            5 (4)  frog, frog, newt, toad
#            6 (8)  flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp
#            7 (10) clam, crab, crayfish, lobster, octopus,
#                   scorpion, seawasp, slug, starfish, worm

# 5. Number of Instances: 101

# 6. Number of Attributes: 18 (animal_name, 15 Boolean attributes, 2 numerics)

# 7. Attribute Information: (name of attribute and type of value domain)
#    1. animal_name:      Unique for each instance
#    2. hair                Boolean
#    3. feathers            Boolean
#    4. eggs                Boolean
#    5. milk                Boolean
#    6. airborne            Boolean
#    7. aquatic             Boolean
#    8. predator            Boolean
#    9. toothed             Boolean
#   10. backbone            Boolean
#   11. breathes            Boolean
#   12. venomous            Boolean
#   13. fins                Boolean
#   14. legs                Numeric (set of values: {0,2,4,5,6,8})
#   15. tail                Boolean
#   16. domestic            Boolean
#   17. catsize             Boolean
#   18. class_type          Numeric (integer values in range [1,7])

# 8. Missing Attribute Values: None

# 9. Class Distribution: Given above






Data visualization

X = frame.values[:, :-1]

# Prepare data for visualization using UMAP
umap = UMAP(n_neighbors=15, min_dist=0.9, random_state=42)
transformed = umap.fit_transform(X)

plt.figure(figsize=(10, 10))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)


for type in np.unique(frame["class_type"]):
    selected = transformed[frame["class_type"] == type]
    plt.scatter(selected[:, 0], selected[:, 1], label=type)

for name, x, y in zip(frame.index, transformed[:, 0], transformed[:, 1]):
    plt.annotate(name, (x, y), alpha=0.8, fontsize=10)

plt.title("Zoo dataset - animal types", fontsize=18)
plt.xticks(())
plt.yticks(())
plt.legend(title="Animal type", title_fontsize=15, fontsize=13)
plt.show()





[image: Zoo dataset - animal types]



Explaining the cause of an anomaly

Once we get anomaly scores and importance of each feature, we could investigate further.
We’ll choose the five most anomalous animals. For example, we’ll take a closer look at honeybee.
It has a quite high score, and the most significant features are venomous (1.91), hair (1.55), breathes (1.28), and domestic (0.97).
If we consider the composition of our dataset, there are no other venomous animals that are domestic, so it does seem right.
We could find explanations like this for every other animal in the top five. Octopus has eight legs; sea wasp does have almost
none of the features in the dataset, etc. So could we tell that these are the real reasons why these animals are unusual? Yes and no.
Yes, this is why LODA sees them as anomalies considering our data, but without a review from a domain expert,
we must be careful about such a statement.
Also, consider the fact that this dataset is small, oversimplified, with just a limited number of features.

loda = LODA(n_estimators=100, bins=100, random_state=42)
loda.fit(X)

scores = loda.score_samples(X)
predicted = loda.predict(X)


plt.figure(figsize=(10, 10))
plt.subplot(111, aspect="auto")
plt.subplots_adjust(
    left=0.02, right=0.98, bottom=0.001, top=0.96, wspace=0.05, hspace=0.01
)

X_n = transformed[predicted == 1]
X_a = transformed[predicted == -1]

plt.scatter(X_n[:, 0], X_n[:, 1], color="tab:orange", label="Inliners")
plt.scatter(X_a[:, 0], X_a[:, 1], color="tab:blue", label="Outliers")

for name, x, y in zip(frame.index[predicted == 1], X_n[:, 0], X_n[:, 1]):
    plt.annotate(name, (x, y), alpha=0.5, fontsize=12)

for name, x, y in zip(frame.index[predicted == -1], X_a[:, 0], X_a[:, 1]):
    plt.annotate(name, (x, y), fontsize=15, ha="right")

plt.title("Zoo dataset - anomalous examples", fontsize=18)
plt.legend(title="Predicted", title_fontsize=15, fontsize=13)
plt.xticks(())
plt.yticks(())
plt.show()

feature_scores = loda.score_features(X)

for animal, score, feature_score in zip(
    frame[predicted == -1].itertuples(),
    scores[predicted == -1],
    feature_scores[predicted == -1],
):
    name = animal[0]
    srt = np.argsort(feature_score)[::-1]

    print(f"{name} score: {score:.3f}")

    for feature, value, importance in zip(
        frame.columns[srt][:4], np.array(animal[1:])[srt], feature_score[srt]
    ):
        print(f"\t{feature} {value} ({importance:.2f})")





[image: Zoo dataset - anomalous examples]
Out:

honeybee score: -4.576
        venomous 1 (1.91)
        hair 1 (1.55)
        breathes 1 (1.28)
        domestic 1 (0.97)
octopus score: -5.763
        backbone 0 (3.06)
        legs 8 (1.79)
        feathers 0 (0.96)
        toothed 0 (0.80)
scorpion score: -5.007
        legs 8 (2.18)
        toothed 0 (1.23)
        domestic 0 (1.16)
        feathers 0 (0.82)
seawasp score: -4.898
        backbone 0 (1.78)
        milk 0 (1.06)
        toothed 0 (1.05)
        feathers 0 (0.80)
wasp score: -4.579
        feathers 0 (1.99)
        fins 0 (1.43)
        catsize 0 (1.41)
        breathes 1 (1.16)








Summary

To sum it up. LODA has a really powerful tool to explain the cause of an anomaly.
It is more resource consuming than scoring samples. We should take a closer look at anomalies if we want to tell the real reason.
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Total running time of the script: ( 0 minutes  5.948 seconds)



Download Python source code: plot_loda_zoo_dataset.py




Download Jupyter notebook: plot_loda_zoo_dataset.ipynb
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Developers Guide


Tools

As anlearn developers, we’re using these tools.


	Code formating: black [https://github.com/psf/black], isort [https://github.com/timothycrosley/isort]


	Linting: flake8 [https://github.com/PyCQA/flake8], mypy [https://github.com/python/mypy]


	Requirements: poetry [https://github.com/python-poetry/poetry]


	Testing: pytest [https://github.com/pytest-dev/pytest], tox [https://github.com/tox-dev/tox]


	Documentation: sphinx [https://github.com/sphinx-doc/sphinx]


	Other: pre-commit [https://github.com/pre-commit/pre-commit], nix-shell [https://nixos.org/], direnv [https://direnv.net/]







Setting-up the developers’ environment


Nix-shell & direnv

For easy environment management, we’re using nix-shell [https://nixos.org/] in combination with direnv [https://direnv.net/].
Using these two tools reduces the time and effort required to create and maintain a deterministic environment.
We highly recommend using them. Nix configuration is in the shell.nix files + nix folder and the direnv configuration is in the .envrc file.




Python tools

As for python versions currently, support is for python 3.6, 3.7, and 3.8.
To ensure a similar code style choice for formating is black [https://github.com/psf/black] and isort [https://github.com/timothycrosley/isort]. As a linters we use mypy [https://github.com/python/mypy] and flake8 [https://github.com/PyCQA/flake8].

For easier code check before committing any changes, there is an option to use the pre-commit tool.
As you can see in .pre-commit-config.yaml it is using only currently installed versions of black, isort, and flake8.




Installation using poetry

We are using the poetry [https://github.com/python-poetry/poetry] for packaging and dependencies managemet. To installing all developement dependencies including ones for generating documentation simply use:


poetry install -E docs









	For pre-commit (after installing tools)

pre-commit install














Tests

All tests are in test folder. We’re using a combinaiton of tox [https://github.com/tox-dev/tox] and pytest [https://github.com/pytest-dev/pytest] for testing.
You can run tests by using the tox command directly or by using make pytest or make check commands.


Configuration files


	Configurations for flake8 [https://github.com/PyCQA/flake8] and mypy [https://github.com/python/mypy] are in the setup.cfg file.


	Configurations for isort [https://github.com/timothycrosley/isort], black [https://github.com/psf/black], and pytest [https://github.com/pytest-dev/pytest] are in the pyproject.toml file.


	Configuration for pre-commit [https://github.com/pre-commit/pre-commit] is in the .pre-commit-config.yaml file.


	Configuration for tox [https://github.com/tox-dev/tox] is in the tox.ini file.









Documentation

We’re using sphinx [https://github.com/sphinx-doc/sphinx] in combination with Read the Docs Sphinx Theme.
For generating the documentation, you have to have anlearn[docs] installed (poetry install -E docs). You can create the documentation by using the make docs command.
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anlearn.loda


anlearn.loda.Histogram


	
class anlearn.loda.Histogram(bins: Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'auto', return_min: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Histogram model

Histogram model based on scipy.stats.rv_histogram [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_histogram.html#scipy.stats.rv_histogram].


	Parameters

	
	bins (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – 
	int [https://docs.python.org/3/library/functions.html#int] - number of equal-width bins in the given range.


	str [https://docs.python.org/3/library/stdtypes.html#str] - method used to calculate bin width (numpy.histogram_bin_edges [https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges]).




See numpy.histogram_bin_edges [https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges] bins for more details, by default “auto”




	return_min (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return minimal float value instead of 0, by default True









	
hist

	Value of histogram


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
bin_edges

	Edges of histogram


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
pdf

	Probability density function


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
fit(X: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → anlearn.loda.Histogram

	Fit estimator


	Parameters

	X (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input data, shape (n_samples,)



	Returns

	Fitted estimator



	Return type

	Histogram










	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.



	Returns

	params – Parameter names mapped to their values.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
predict_proba(X: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Predict probability

Predict probability of input data X.


	Parameters

	X (numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Input data, shape (n_samples,)



	Returns

	Probability estimated from histogram, shape (n_samples,)



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters

	**params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Estimator parameters.



	Returns

	self – Estimator instance.



	Return type

	estimator instance
















anlearn.loda.LODA


	
class anlearn.loda.LODA(n_estimators: int [https://docs.python.org/3/library/functions.html#int] = 1000, bins: Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]] = 'auto', q: float [https://docs.python.org/3/library/functions.html#float] = 0.05, random_state: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, n_jobs: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, verbose: int [https://docs.python.org/3/library/functions.html#int] = 0)

	LODA: Lightweight on-line detector of anomalies 1

LODA is an ensemble of histograms on random projections.
See Pevný, T. Loda 1 for more details.


	Parameters

	
	n_estimators (int [https://docs.python.org/3/library/functions.html#int], optional) – number of histograms, by default 1000


	bins (Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – 
	int [https://docs.python.org/3/library/functions.html#int] - number of equal-width bins in the given range.


	str [https://docs.python.org/3/library/stdtypes.html#str] - method used to calculate bin width (numpy.histogram_bin_edges [https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges]).




See numpy.histogram_bin_edges [https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges] bins for more details, by default “auto”




	q (float [https://docs.python.org/3/library/functions.html#float], optional) – Quantile for compution threshold from training data scores.
This threshold is used for predict method, by default 0.05


	random_state (Optional[int [https://docs.python.org/3/library/functions.html#int]], optional) – Random seed used for stochastic parts., by default None


	n_jobs (Optional[int [https://docs.python.org/3/library/functions.html#int]], optional) – Not implemented yet, by default None


	verbose (int [https://docs.python.org/3/library/functions.html#int], optional) – Verbosity of logging, by default 0









	
projections_

	Random projections, shape (n_estimators, n_features)


	Type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
hists_

	Histograms on random projections, shape (n_estimators,)


	Type

	List[Histogram]










	
anomaly_threshold_

	Treshold for predict() function


	Type

	float [https://docs.python.org/3/library/functions.html#float]









Examples

>>> import numpy as np
>>> from anlearn.loda import LODA
>>> X = np.array([[0, 0], [0.1, -0.2], [0.3, 0.2], [0.2, 0.2], [-5, -5], [0.6, 0.7]])
>>> loda = LODA(n_estimators=10, bins=10, random_state=42)
>>> loda.fit(X)
LODA(bins=10, n_estimators=10, random_state=42)
>>> loda.predict(X)
array([ 1,  1,  1,  1, -1,  1])





References


	1(1,2,3,4)

	Pevný, T. Loda: Lightweight on-line detector of anomalies. Mach Learn 102, 275–304 (2016).
<https://doi.org/10.1007/s10994-015-5521-0>






	
fit(X: anlearn._typing.ArrayLike, y: Optional[anlearn._typing.ArrayLike] = None) → anlearn.loda.LODA

	Fit estimator


	Parameters

	
	X (ArrayLike) – Input data, shape (n_samples, n_features)


	y (Optional[ArrayLike], optional) – Present for API consistency by convention, by default None






	Returns

	Fitted estimator



	Return type

	LODA










	
fit_predict(X, y=None)

	Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.


	Parameters

	
	X ({array-like, sparse matrix, dataframe} of shape             (n_samples, n_features)) – 


	y (Ignored) – Not used, present for API consistency by convention.






	Returns

	y – 1 for inliers, -1 for outliers.



	Return type

	ndarray of shape (n_samples,)










	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.



	Returns

	params – Parameter names mapped to their values.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
predict(X: anlearn._typing.ArrayLike) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Predict if samples are outliers or not

Samples with a score lower than anomaly_threshold_ are considered
to be  outliers.


	Parameters

	X (ArrayLike) – Input data, shape (n_samples, n_features)



	Returns

	1 for inlineres, -1 for outliers, shape (n_samples,)



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
score_features(X: anlearn._typing.ArrayLike) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Feature importance

Feature importance is computed as a one-tailed two-sample t-test between
\(-log(\hat{p}_i)\) from histograms on projections with and without a
specific feature. The higher the value is, the more important feature is.

See full description in 3.3  Explaining the cause of an anomaly 1 for
more details.


	Parameters

	X (ArrayLike) – input data, shape (n_samples, n_features)



	Returns

	Feature importance in anomaly detection.



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]





Notes


\[t_j = \frac{\mu_j - \bar{\mu}_j}{
    \sqrt{\frac{s^2_j}{|I_j|} + \frac{\bar{s}^2_j}{|\bar{I_j}|}}}\]






	
score_samples(X: anlearn._typing.ArrayLike) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Anomaly scores for samples

Average of the logarithm probabilities estimated of individual projections.
Output is proportional to the negative log-likelihood of the sample, that
means the less likely a sample is, the higher the anomaly value it receives 1.
This score is reversed for scikit-learn compatibility.


	Parameters

	X (ArrayLike) – Input data, shape (n_samples, n_features)



	Returns

	The anomaly score of the input samples. The lower, the more abnormal.
Shape (n_samples,)



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters

	**params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Estimator parameters.



	Returns

	self – Estimator instance.



	Return type

	estimator instance














[image: LODA: large data - Credit Card Fraud Detection dataset]
LODA: large data - Credit Card Fraud Detection dataset











            

          

      

      

    

  

    
      
          
            
  
anlearn.stats


anlearn.stats.IQR


	
class anlearn.stats.IQR(k: float [https://docs.python.org/3/library/functions.html#float] = 1.5, lower_quantile: float [https://docs.python.org/3/library/functions.html#float] = 0.25, upper_quantile: float [https://docs.python.org/3/library/functions.html#float] = 0.75, ensure_2d: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Interquartile range

Outlier deteciton method using Tukey’s fences.
If lower quantile is 0.25 (\(Q_1\) lower quartile) and
upper quantile is 0.75 (\(Q_3\) upper quartile),
then outlier is any observation outside the range:


\[[Q_1 - k(Q_3 - Q_1); Q_3 + k(Q_3 - Q_1)]\]

John Tukey proposed \(k=1.5\) is an outlier, and \(k=3\) is far out.


	Parameters

	
	k (float [https://docs.python.org/3/library/functions.html#float], optional) – Outlier threshold, by default 1.5


	lower_quantile (float [https://docs.python.org/3/library/functions.html#float], optional) – Lower quantile, from (0; 1), by default 0.25


	upper_quantile (float [https://docs.python.org/3/library/functions.html#float], optional) – Upper quantile, from (0; 1), by default 0.75


	ensure_2d (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Frobid input 1D arrays, by default True









	
lqv_

	Lower quantile value estimated from the input data


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
uqv_

	Upper quantile value estimated from the input data


	Type

	float [https://docs.python.org/3/library/functions.html#float]










	
iqr_

	Interquartile range, uqv_ - lqv_


	Type

	float [https://docs.python.org/3/library/functions.html#float]









Example

>>> import numpy as np
>>> from anlearn.stats import IQR
>>> X = np.hstack([[-7,-4], np.arange(5), [10, 15]])
>>> iqr = IQR(ensure_2d=False)
>>> iqr.fit(X)
IQR(ensure_2d=False)
>>> iqr.predict(X)
array([-1,  1,  1,  1,  1,  1,  1,  1, -1])
>>> iqr.score_samples(X)
array([-1.75, -1.  , -0.  , -0.  , -0.  , -0.  , -0.  , -1.5 , -2.75])






	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Lower quantile must be lower than upper quantile.






	
fit(X: anlearn._typing.ArrayLike, y: Optional[anlearn._typing.ArrayLike] = None) → anlearn.stats.IQR

	Fit estimator


	Parameters

	
	X (ArrayLike) – Input data of shape (n_samples, 1) or (n_samples,) if ensure_2d is False


	y (Optional[ArrayLike], optional) – Ignored, present for API consistency by convention, by default None






	Returns

	Fitted estimator



	Return type

	IQR










	
fit_predict(X, y=None)

	Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.


	Parameters

	
	X ({array-like, sparse matrix, dataframe} of shape             (n_samples, n_features)) – 


	y (Ignored) – Not used, present for API consistency by convention.






	Returns

	y – 1 for inliers, -1 for outliers.



	Return type

	ndarray of shape (n_samples,)










	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool], default=True) – If True, will return the parameters for this estimator and
contained subobjects that are estimators.



	Returns

	params – Parameter names mapped to their values.



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]










	
predict(X: anlearn._typing.ArrayLike) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Predict if samples are outliers or not

Samples with a score lower than k are considered to be  outliers.


	Parameters

	X (ArrayLike) – Input data, shape (n_samples, n_features)



	Returns

	Shape (n_samples,) 1 for inlineres, -1 for outliers



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
score_samples(X: anlearn._typing.ArrayLike) → numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]

	Score samples

Score is comuputed as distance from interval \([Q_{lower}; Q_{upper}]\) divided
by interquartile range. \(score = distance(data, (lqv, uqv)) / iqr\).
Score is inverted for scikit-learn compatibility


	Parameters

	X (ArrayLike) – Input data of shape (n_samples, 1) or (n_samples,) if ensure_2d is False



	Returns

	Shape (n_samples,). The outlier score of the input samples.
The lower, the more abnormal.



	Return type

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline]). The latter have
parameters of the form <component>__<parameter> so that it’s
possible to update each component of a nested object.


	Parameters

	**params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Estimator parameters.



	Returns

	self – Estimator instance.



	Return type

	estimator instance
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Computation times

00:11.375 total execution time for auto_examples files:








	LODA: Explaining the cause of an anomaly on Zoo dataset (plot_loda_zoo_dataset.py)

	00:05.948

	0.0 MB



	Comparison of scikit-learn anomaly detection methods and LODA (plot_sklearn_anomaly_detection_methods_comparison.py)

	00:04.934

	0.0 MB



	LODA: projections & histograms (plot_loda_projections.py)

	00:00.494

	0.0 MB



	LODA: large data - Credit Card Fraud Detection dataset (loda_large_dataset.py)

	00:00.000

	0.0 MB
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